Publikācijas:

  1. E.Celms, K.Cerans, K.Freivalds, P.Kikusts, L.Lace, G.Melkus, M.Opmanis, D.Rituma, P.Rucevskis, J.Viksna. Application of graph clustering and visualisation methods to analysis of biomolecular data. Communications in Computer and Information Science 838, 243-257, 2018.
  2. K.Freivalds, R.Liepins. Improving the neural GPU architecture for algorithm learning. Proceedings of NAMPI: Neural Abstract Machines & Program Induction, 2018.
  3. L.Lace, G.Melkus, P.Rucevskis, D.Ruklisa, E.Celms, K.Cerans, P.Kikusts, M.Opmanis, D.Rituma, J.Viksna. Graph-based characterisations of cell types and functionally related modules in promoter capture Hi-C data. Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3 BIOINFORMATICS: BIOINFORMATICS, 78-89, 2019.
  4. M.Opmanis. About correctness of graph-based social network analysis. Baltic Journal of Modern Computing 7(2), 271-292, 2019.
  5. D.Ruklisa, A.Brazma, K.Cerans, T.Schlitt, J.Viksna. Dynamics of gene regulatory network sand their dependence on network topology and quantitative parameters – the case of phage λ. BMC Bioinformatics, 20:296, 2019.
  6. J.Viksna, G.Melkus, E.Celms, K.Cerans, K.Freivalds, P.Kikusts, L.Lace, M.Opmanis, D.Rituma, P.Rucevskis. Topological structure analysis of chromatin interaction networks. BMC Bioinformatics, 20(Suppl 23):618, 2019.
  7. L.Lace, G.Melkus, P.Rucevskis, E.Celms, K.Cerans, P.Kikusts, M.Opmanis, D.Rituma, J.Viksna. Characteristic topological features of promoter capture Hi-C interaction networks. Communications in Computer and Information Science. (Accepted for publication)
  8. G.Melkus, P.Rucevskis, E.Celms, K.Cerans, K.Freivalds, P.Kikusts, L.Lace, M.Opmanis, D.Rituma, J.Viksna. Graph-based network analysis of transcriptional regulation pattern divergence in duplicated yeast gene pairs. ACM International Conference Proceeding Series. (Accepted for publication)

Konferenču prezentācijas:

  1. J.Viksna, M.Barzine, A.Brazma, E.Celms, K.Cerāns, J.Choudhary, N.Fonseca, K.Freivalds, F.Ghavidel, A.Jarnuczak, L.Lace, D.Rituma, J.Viksna. Deep learning for protein abundance prediction using Gene Ontology and RNA abundance information. RECOMB 2018.
  2. E.Celms, K.Cerans, K.Freivalds, P.Kikusts, L.Lace, G.Melkus, M.Opmanis, D.Rituma, P.Rucevskis, J.Viksna. Application of graph clustering and visualisation methods to analysis of biomolecular data. DB&IS 2018.
  3. J.Viksna, M.Barzine, A.Brazma, E.Celms, K.Cerāns, J.Choudhary, N.Fonseca, K.Freivalds, F.Ghavidel, A.Jarnuczak, L.Lace, D.Rituma, J.Viksna An integrated approach to missing data imputation in quantitative proteomics experiments. ECCB 2018.
  4. P.Rucevskis, M.Opmanis, P.Kikusts, E.Celms, L.Lace, G.Melkus, J.Viksna, D.Ruklisa. Predicting functionally related modules in promoter capture Hi-C data. ECCB 2018.
  5. L.Lace, G.Melkus, P.Rucevskis, E.Celms, K.Cerans, P.Kikusts, M.Opmanis, D.Rituma, J.Viksna. Graph-based characterisations of cell types and functionally related modules in promoter capture Hi-C data. BIOINFORMATICS/BIOSTEC 2019.
  6. G.Melkus, P.Rucevskis, E.Celms, K.Cerans, P.Kikusts, L.Lace, M.Opmanis, D.Rituma, J.Viksna. Topological structure analysis of Hi-C interaction graphs. ISMB/ECCB 2019.
  7. G.Melkus, P.Rucevskis, E.Celms, K.Cerans, K.Freivalds, P.Kikusts, L.Lace, M.Opmanis, D.Rituma, J.Viksna. Graph-based network analysis of transcriptional regulation pattern divergence in duplicated yeast gene pairs. ISMB/ECCB 2019.
  8. G.Melkus, P.Rucevskis, E.Celms, K.Cerans, K.Freivalds, P.Kikusts, L.Lace, M.Opmanis, D.Rituma, J.Viksna. Graph-based network analysis of transcriptional regulation pattern divergence in duplicated yeast gene pairs. CSBio 2019.
  9. J.Viksna, G.Melkus, E.Celms, K.Cerans, K.Freivalds, P.Kikusts, L.Lace, M.Opmanis, D.Rituma, P.Rucevskis. Topological structure analysis of chromatin interaction networks. GIW/ABACBS 2019.

Projekta ietvaros izstrādātā programmatūra un sagatavotās kopas ir publicēta GitHub repozitorijos:

  1. UnlabelledProteomicsImputation
  2. HiCGraphAnalysis
  3. PCHiCNetworkExplorer
  4. GeneRegulatoryNetworks